Noninvasive Average Flow and Differential Pressure Estimation for an Implantable Rotary Blood Pump using Dimensional Analysis

Einly Lim, Dean M Karantonis, John A Reizes, Shaun L Cloherty, David G Mason, and Nigel H Lovell, Senior Member, IEEE

Abstract—Accurate non-invasive average flow and differential pressure estimation of implantable rotary blood pumps (IRBPs) is an important practical element for their physiological control. While most attempts at developing flow and differential pressure estimate models have involved purely empirical techniques, dimensional analysis utilizes theoretical principles of fluid mechanics which provides valuable insights into parameter relationships. Based on data obtained from a steady flow mock loop under a wide range of pump operating points and fluid viscosities, flow and differential pressure estimate models were thus obtained using dimensional analysis. The algorithm was then validated using data from two other VentAssist™ IRBPs. Linear correlations between estimated and measured pump flow over a flow range of 0.5 L/min to 8.0 L/min resulted in a slope of 0.98 (R² value = 0.9848). The average flow error was 0.20 ± 0.14 L/min (mean ± standard deviation) and the average percentage error was 5.79%. Similarly, linear correlations between estimated and measured pump differential pressure resulted in a slope of 1.027 (R² value = 0.997) over a pressure range of 60 mmHg to 180 mmHg. The average differential pressure error was 1.84 ± 1.54 mmHg and the average percentage error was 1.51%.

Index Terms—Dimensional analysis, flow estimation, implantable rotary blood pump, left ventricular assist device.

I. INTRODUCTION

The VentAssist™ (Ventracor Ltd, Sydney, Australia) is a centrifugal implantable rotary blood pump (IRBP) with a hydrodynamic bearing that is used as a left ventricular assist device (LVAD) for long-term implant recipients [1]. Due to the insensitivity of IRBPs to preload, over-pumping or under-pumping conditions that endanger implant recipients might potentially occur if pump control is not properly implemented. This situation is further complicated by residual ventricular function, dependent on the amount of residual contractility and venous return [2], which causes pump head pressure to vary with each heart beat.

Various pump control algorithms have been designed by different research groups. The traditional control strategy, which maintains a constant pump speed, demonstrates a limited degree of adaptability to cardiac demand and clinical conditions of the heart. Giridharan et al. [3] proposed that maintaining a constant average pressure difference (75mmHg) between the left ventricle and the aorta provided sufficient physiological perfusion to the body over a wide range of physical activities and clinical cardiac conditions. On the contrary, Smith et al. [2] suggested that flow is a more physiologically relevant parameter than pump differential pressure since pump differential pressure by itself has no inherent physiological significance. Using a similar approach to Giridharan et al. [3], Wu et al. [4] based their algorithms on the control of aortic pressure rather than pump differential pressure. A state-space model of the human circulatory system as well as measurements of pump differential pressure was used to estimate the aortic pressure. The performance of all the above control algorithms (except speed control) requires accurate measurements of either pump flow or pump differential pressure. However, implantation of flow or pressure sensors in the body result in an attendant risk of thrombus formation, and the reliability of the measurements is affected by measurement drift and thus the need for in-situ calibration.

Therefore, one design goal of an IRBP is to be able to reliably and accurately estimate pump flow as well as differential pressure without the need for additional implantable sensors. Extensive studies have reported that satisfactory algorithms for sensorless flow and differential pressure estimation through empirical process of pump variables (flow or differential pressure) mapping had been developed [5], [6], [7], [8]. However, the performance and design characteristics of different pumps cause the proposed algorithms to be substantially different from each other [9]. In addition, to a large extent, the algorithms have failed to adequately model changes in fluid viscosity and hence blood hematocrit (HCT).

The present work involved an analysis of data obtained under steady flow conditions for a wide range of pump operating points and fluid viscosities, and employed a nondimensional analytical approach. By reducing the test data on a pump into nondimensional form, it is possible to
extrapolate the performance of the pump with revised physical pump characteristics, different pump speeds, and different operating conditions [2]. Compared with purely empirical methods of flow or differential pressure mapping (where curve-fitting is applied to the test variables), the Buckingham \(\pi \) theorem \[10], \[11\], which groups the test variables into fewer independent dimensionless groups, provides a better physical insight into the effects of different parameters on pump performance.

II. METHOD

A. Mock Loop Experiments

The mock circulatory loop, consisting of a small reservoir bag (200 mL), the VentrAssistTM pump, a variable resistance clamp, and 2 segments of silicone tubing (1.5 m total length, 3/8” inner diameter, 3/32” thickness): one connecting the pump outlet to the reservoir and the other connecting the reservoir back to the pump inlet, provided a test environment for steady flow conditions. The pump flow rate, pump differential pressure, impeller speed and electrical input power were recorded at each operating point during the experiment at a sampling rate of 4 kHz. The fluid employed in the experiment was an aqueous glycerol solution at concentrations of 30\%wt (2.323 mPas), 39\%wt (3.394 mPas) and 45\%wt (4.823 mPas). In each case, a resistance clamp mounted on the loop was adjusted so as to vary the circuit resistance. The circuit resistance was defined by adjusting the resistance clamp to achieve a certain flow level, e.g. 1, 3, 5, 7, 9 L/min at a fixed speed, i.e. 2300 rpm. At each resistance level, pump speed was adjusted in increments of 100 rpm within a range of 1800 rpm to 3000 rpm. Once the desired speed had been set and the pump speed controller showed a steady pumping condition, values of pump power, speed, differential pressure and flow rate averaged over a 20 second period were recorded. Since the viscosity of aqueous glycerol is highly sensitive to temperature, a thermistor transducer was attached to the loop to measure and control the temperature of the solution. The temperature was maintained at 25\(^\circ\) C. Three versions of nominally the same VentrAssistTM pumps were used to obtain the data, one set for each pump. The dataset from the first pump was used in the derivation of the correlation, while the other two datasets were used as validation. The raw data from pump 1 for an aqueous glycerol solution with a concentration of 39\%wt is shown in Fig. 1 and 2. It can be seen that once the speed and power is known, the flow and differential pressure across the pump can be immediately determined. Unfortunately, if the fluid is changed, the curves are also changed; therefore a more general approach needs to be provided.

B. Theoretical Framework

The objective was to use the viscosity of the aqueous glycerol solution (as a blood analogue at known HCT), pump input power and impeller speed as indicators of pump flow rate and differential pressure. Ideally, the electromagnetic energy supplied by the external power source is converted into the fluid energy for the pump as well as the inertial energy used to accelerate or decelerate the impeller. However, in a practical situation, various losses occur along the flow passage path in the pump. The energy losses in a general pump include mechanical losses caused by mechanical contact at the shaft sealing section, disk friction losses consumed with friction torque in the gap between the impeller shroud disk and the pump housing wall, fluid leakage losses caused by recirculation of the fluid, and hydraulic losses in the impeller and in the diffuser (such as flow separation) \[12\].

Due to the complexity in the analysis of the pump characteristics caused by various operating losses and imperfections involved in the design, the theoretical relationship between power, flow and differential pressure derived for an ideal centrifugal pump is not applicable when studying their practical performance. Thus, the current approach aims to use a systematic nondimensional approach that is applicable to any pump design to derive the relationship between pump power, speed, fluid viscosity, flow and differential pressure.
The performance of a turbomachine depends on a number of variables, including pump differential pressure (Δp), input power (P) and efficiency:

$$\Delta p = f_1 (\omega, Q, \mu, D, l_1, \ldots, l_m, \alpha_1, \ldots, \alpha_n)$$ \hspace{1cm} (1)

$$P = f_2 (\omega, Q, \mu, D, l_1, \ldots, l_m, \alpha_1, \ldots, \alpha_n)$$ \hspace{1cm} (2)

As shown in (1) – (2), $\Delta p, P$ depend on the speed of the impeller (ω), flow rate through the pump (Q), viscosity (μ) and density (ρ) of the fluid, as well as the geometric parameters of the pump, which include the characteristic dimension of the pump represented by the impeller diameter (D), lengths (l) and angles (α) required to fully describe the pump body and rotor. The Buckingham π theorem can be used to reduce the number of variables involved in determining the performance of the pump to a smaller number of nondimensional groupings.

Using dimensional analysis as explained in Appendix, together with justified assumptions, (1) and (2) can be rewritten as the pump affinity laws:

$$\frac{\Delta p}{\rho \omega_o^2 D^2} = F_1 \left(\frac{Q}{\rho \omega_o D^3} \right)$$ \hspace{1cm} (3)

and

$$\frac{P}{\rho \omega_o^3 D^5} = F_2 \left(\frac{Q}{\rho \omega_o D^3} \right) \frac{\mu}{\rho \omega_o D^3}$$ \hspace{1cm} (4)

The nondimensional groups are listed in Table 1 that are specifically applicable to the types of pumps discussed in this paper. Table 2 lists the units and corresponding constants leading to truly nondimensional coefficients.

C. Data Analysis

C.1 Flow estimate model

In the first step of the dimensional analysis, a graph of power coefficient versus flow coefficient was plotted for various speeds at a constant viscosity (39%wt aqueous glycerol) (Fig. 3). Dynamic viscosity of 39%wt aqueous glycerol solution at 25°C, 3.4 mPas, is very close to that of the average viscosity of whole human blood, 3.2 mPas, with hematocrit level of 38% at 37°C [13]. Instead of collapsing onto a single curve, it was observed that the power coefficient values spread was more than ± 25% from the mean for the speeds plotted. This was due to the fact that the coil winding and other friction losses did not follow the same pattern as the power required to move the fluid, and that the Reynolds number changed as the speed was altered. Thus, power coefficients needed to be corrected for varying speed (since viscosity did not vary in the training dataset used).

As may be observed in Fig. 3, an empirically derived cubic relationship between power coefficients and flow coefficients was obtained at each speed, namely,

$$\Pi_{39\%} = a.\Phi_{39\%}^3 + b.\Phi_{39\%}^2 + c.\Phi_{39\%} + d$$ \hspace{1cm} (5)

Since the speed generally causes an offset in the graph; a, b and c are assumed to be constant, while d is a function of speed (ω). A plot of d against ω indicated that d is inversely proportional to ω^2, so that the following relationship was obtained:

$$\Pi_{39\%} = -7148.9.\Phi_{39\%}^3 + 104.4.\Phi_{39\%}^2 + 0.057.\Phi_{39\%} + 0.001642$$ \hspace{1cm} \left(\omega_{39\%}/\omega_d\right)^2$$ \hspace{1cm} (6)

To study the effect of viscosity, two other sets of training data (obtained using 30%wt and 45%wt aqueous glycerol solution) were used. Equation (6) was used to estimate power...
coefficients for each training data set. The ratio, m of measured power coefficients to estimated power coefficients predicted by (6) was calculated from

$$m = \frac{\text{Measured power}}{\text{Estimated power}} = \frac{a\Phi^3 + b\Phi^2 + c\Phi + d}{\Pi}$$ \hspace{1cm} (7)

It is evident from Fig. 4 that the ratio did not collapse to the value of 1.0 when viscosity of the solution changed. The data for each viscosity showed a different and approximately constant power coefficient ratio. As viscosity increased, higher power coefficients were required to produce the same flow coefficient due to the effect of viscosity on the Reynolds number.

The relationship between the power coefficient ratio, m, and viscosity, μ, is shown in Fig. 5 and given by

$$m = 0.5067\frac{\mu}{\mu_{39\%}} + 0.4918$$ \hspace{1cm} (8)

In order to collapse the set of Π-Φ curves in Fig. 3 onto a single curve for all viscosities and speeds, the power coefficient was corrected to

$$\Pi' = \frac{\Pi}{m} - d$$ \hspace{1cm} (9)

Since the aim of this paper is the development of a method of estimating the flow rate from power and speed measurements, flow coefficients, Φ, were plotted against corrected power coefficients, Π', in Fig. 6, together with the line of best fit

$$\Phi = -241.19\Pi'^2 + 3.556\Pi' - 0.0049$$ \hspace{1cm} (10)

C.2 Differential pressure estimate model

As in section C.1, a graph of differential pressure coefficient versus flow coefficient was plotted for various speeds at a constant viscosity (39%wt aqueous glycerol) (Fig. 7). It was observed that there was only a small spread of differential pressure coefficient values at the same value of flow coefficient. This indicates that there is negligible effect of the Reynolds number on the pump characteristic (Ψ-Φ) curve.

To study the effect of viscosity, two other sets of training data (obtained using 30%wt and 45%wt aqueous glycerol solution) were used. It is shown in Fig. 8 that the curves for...
various viscosities collapse onto a curve with only a small spread. A cubic relationship obtained between differential pressure coefficients and flow coefficients,

\[\Psi = 170959\Phi^3 + 1024\Phi^2 - 17444\Phi + 0.1528 \]

(11)
is also shown in Fig. 8.

III. RESULTS
Flow and differential pressure estimate equations were developed by applying the methodology described above to a training data set. The performance of the estimation models was then validated against the remaining pool of data obtained using two other VentrAssist pumps, which cover the same viscosity levels as the training data. Fig. 9 illustrates the estimated flow corresponding to a range of measured flow rates (0.5 L/min to 8.0 L/min) while Fig. 10 illustrates the estimated differential pressures corresponding to a range of measured differential pressures (60 mmHg to 180 mmHg). Correlation between measured and estimated flow, as well as measured and differential pressure was highly significant (flow: \(R^2 = 0.9848 \); differential pressure: \(R^2 = 0.997 \)), and the slope of the linear regression line was very close to unity (flow: slope = 0.98; differential pressure: slope = 1.027). The residual error for flow estimation was in the range of \(\pm 0.8 \) L/min, while for differential pressure lay within the range of \(\pm 8 \) mmHg. The average flow error was 0.20 \(\pm 0.14 \) L/min (mean \(\pm \) standard deviation) and the average differential pressure error was 1.84 \(\pm 1.54 \) mmHg.

IV. DISCUSSION
Noninvasive estimation of average pump flow and differential pressure has been investigated by many research groups as a means for physiological control of IRBPs. Most research groups have used surface fitting to map flow from the measurable quantities, e.g. power and speed. Bertram [5] reported that the first successful attempt at flow estimation...
was demonstrated by Wakisaka et al. [14] using pump power, speed and HCT level. They derived their algorithm from the data obtained in a mock loop set up using whole goat blood and successfully validated it in a healthy goat with an average error of 0.5 L/min over a range of 2.3 to 8.1 L/min. As Malagutti et al. [9] indicated, the limitation of their study was that the effects of viscosity were investigated at only a single target speed (2800 rpm).

On the other hand, Tsukiya et al. [12] included an extra step to estimate viscosity by occluding the pump outlet (Q = 0) for < 10s, based on an inverse linear correlation between the Reynolds number and the speed-normalized current at zero flow. The algorithm achieved a maximum error of 0.5 L/min between estimated and measured flow and 15 mmHg between estimated and measured differential pressure when tested in sheep. The limitation of their study is the infeasibility of regular pump outlet occlusion in patients.

Tsukiya et al. [15] developed a technique for estimating the instantaneous flow rate in a pump implanted chronically in an animal. The technique took into account reverse flow, inlet cannula obstruction and suction. They reported a mean flow rate error of 1 L/min. The main difference between their study and the present investigation is that they used a centrifugal pump rotor supported by a thrust bearing that contains the mechanical contacting surface, while the present study utilizes pumps that are hydraulically supported. Therefore, viscous friction losses have a much more significant influence in the present study, compared with their study, where the mechanical friction losses and the electromagnetic losses were dominant.

Previously in our laboratory we developed a steady flow estimation model based on a VentAssist™ pump, taking into account the effect of blood HCT [9]. We reported a residual error of 0.25±0.2 L/min. The current approach yields a slightly higher accuracy (with average flow estimation residuals of 0.21 ± 0.15 L/min). Given the spread of the residuals, this difference is not statistically significant. More significantly, in the present paper, the model is validated against data obtained using two VentAssist pumps which are slightly different from each other due to inevitable variations in tolerances incurred in the manufacturing process. The advantage of the current approach is that we can obtain a more fundamental understanding of how different fluid mechanical parameters affect the pump performance, and if required, ascertain the performance of the pump under modified operating conditions.

It is important to note that the performance of the pressure estimate model derived in the present paper degrades when the flow coefficient increases. This is due to the fact that at a higher speed (or higher Reynolds number), the curves shift to the right, indicating that the pump is able to deliver a higher flow rate at the same differential pressure. In order to collapse the $P-\Phi$ curves into a single curve, Wong et al. [16] proposed that the differential pressure be plotted against a modified flow coefficient. However, the method does not seem to improve the present pressure estimate model, probably due to the fact that the error in the pressure estimation is not only a function of Reynolds number, but also a function of flow coefficient [17]. As stated by Lorenz et al. [17], the commonly used definition of the Reynolds number, which uses the impeller speed as the representative velocity, might not hold true at operating points far from the pump’s optimal efficiency point. Since the spread of the differential pressure at the same flow coefficient is considered small in our flow range of interest (0.5 – 8 L/min), no further effort has been taken to refine the equation by collapsing the curves.

Several approaches [12], [18], have been proposed to estimate HCT level in the clinical setting, since variation in HCT level may cause differences in flow rates as high as 2L/min at the same power and speed. Unfortunately, research to date has not been particularly successful. For example, Kitamura et al. used physical models of the motor, the centrifugal pump and the Windkessel model of the systemic circulation to solve for viscosity, pump flow and pressure [18]. The estimated viscosity converged to the true value in vitro, but failed in vivo. The estimates vary between 8 and 13 cP depending on the driving conditions, while the actual blood viscosity was about 2.8 cP. The uncertainty in the estimation of viscosity in vivo was probably due to the oversimplification of the systemic circulation model. In our present study, it is assumed that in the clinical setting, the HCT level will be ascertained by prior measurement. Future studies shall examine the noninvasive estimation of HCT level in the patients’ circulation using the implanted pump as a sensing device.

The present study uses aqueous glycerol solution instead of blood. Since blood is a non-Newtonian fluid, it is expected to complicate the estimate of flow using power. However, at the high shear rates experienced in the VentAssist™ IRBP, i.e. >1000 s$^{-1}$, the dynamic viscosity of blood can be considered to be independent of shear rate [7].

It should be noted that the present study focuses on the estimation of flow rate under steady flow conditions. In a pulsatile environment, such as the cardiovascular system, the inertia of the fluid and the pump’s rotating element, as well as the time constants of the speed controller need to be taken into account. The electrical input power will not only be used to provide the torque to the pump, but will also be used to accelerate or decelerate the impeller. Thus, a term which takes into account the moment inertia of the impeller has to be added. Furthermore, the time taken by the controller to sense and respond to load changes is important in developing the dynamic pump model. Experimentation on these aspects of instantaneous flow estimation is on-going in our laboratory. Results from the experiments showed that average flow estimates are applicable to pulsatile flow environment, in the time-averaged sense [19]. This is in good agreement with the excellent results which are obtained in water hammer calculations when power supply is cut to very large pumps.

V. conclusion

The work herein introduces a systematic approach based on dimensional analysis to estimate average flow rate from average pump input power, average speed and viscosity. In
comparison with empirical model fitting, this approach proves to be more accurate while also providing valuable insights into relationships between various fluid mechanics parameters which affect the pump flow estimated.

APPENDIX

The performance of a turbomachine depends on a number of variables, including pump differential pressure (Δp), input power (P) and efficiency. Since the present work aims to estimate flow and differential pressure across the pump from the pump input power, fluid viscosity and impeller speed, we need at least two equations, one for the total pressure rise across the pump, Δp, and another for power required to drive the pump, P. Δp and P depend on the speed of the impeller (ω), flow across the pump (Q), viscosity of the fluid (μ), as well as the geometric parameters of the pump, which include pump impeller diameter (D), lengths (l) and angles (α) required to fully describe the pump body and rotor.

\[
\Delta p = f_1(\omega, Q, \mu, \rho, D, l_1, \ldots, l_m, \alpha_1, \ldots, \alpha_n) \quad (i)
\]

\[
P = f_2(\omega, Q, \mu, \rho, D, l_1, \ldots, l_m, \alpha_1, \ldots, \alpha_n) \quad (ii)
\]

Buckingham’s Pi theorem was used to reduce the number of variables in (i) and (ii) into a smaller number of nondimensional groupings [10], [11]. The theorem states that: Given a relation among j parameters of the form

\[
q_1 = f_1(q_2, q_3, \ldots, q_j).
\]

the j parameters may be grouped into $j-r$ independent dimensionless parameters Π, in the form of

\[
\Pi_1 = F(\Pi_2, \Pi_3, \ldots, \Pi_{j-r}).
\]

where r is usually equal to the minimum number of independent dimensions, called repeating variables, required to specify the dimensions of all the parameters.

In the first step of the derivation, ρ (dimension = ML$^{-3}$), ω (dimension = T$^{-1}$), and D (dimension = L) were selected as a set of repeating variables since it includes all the primary dimensions, i.e. MLT. Equations (i) and (ii) were then transformed into nondimensional forms, i.e. (iii) and (iv), by dividing each dimension term in the equations by a combination of the repeating variables taken to appropriate powers.

\[
\frac{\Delta p}{\rho \omega^2 D^2} = F\left(\frac{Q}{\rho \omega D^3}, \frac{\rho \omega D^2}{\mu}, \frac{l_1}{D}, \ldots, \frac{l_m}{D}, \frac{\alpha_1}{\alpha}, \ldots, \frac{\alpha_n}{\alpha} \right) \quad (iii)
\]

\[
\frac{P}{\rho \omega^3 D^5} = F\left(\frac{Q}{\rho \omega D^3}, \frac{\rho \omega D^2}{\mu}, \frac{l_1}{D}, \ldots, \frac{l_m}{D}, \frac{\alpha_1}{\alpha}, \ldots, \frac{\alpha_n}{\alpha} \right) \quad (iv)
\]

Since attention is limited to a single model of a rotary centrifugal blood pump, the geometrical parameters are in principle the same for all copies of the pump, so (iii) and (iv) reduce to:

\[
\frac{\Delta p}{\rho \omega^2 D^2} = F\left(\frac{Q}{\rho \omega D^3}, \frac{\rho \omega D^2}{\mu} \right) \quad (v)
\]

Thus, complete similarity in pump performance tests would require identical flow coefficients and Reynolds numbers. Since the flow through the clearances is controlled by different physical phenomena to those involved in pumping, it has been suggested that a number of Reynolds numbers may be needed to fully describe the flow in a pump.

In practice, the viscous effects (Reynolds numbers) are unimportant for fully turbulent flow. The conventional laminar-to-turbulent flow transition value for the pump Reynolds number is approximately 2000000 (scaled from 500000 to account for difference in Reynolds number definition) [20]. However, since blood pumps usually operate in or near the laminar flow region [2], with a relatively low Reynolds number (65000 – 220000 for our test data), viscosity effects have to be taken into account. Furthermore, since the measured input power is the power supplied by the controller to the motor coils, electromechanical power consumption, which largely depends on the motor speed, needs to be considered.

REFERENCES

Einly Lim received the B.BiomedE. (Hons) and M.E. degrees from the University of Malaya (UM), Malaysia in 2006. He is currently undertaking a PhD degree with the Graduate School of Biomedical Engineering at UNSW in collaboration with industry partner Ventracor, with the research focused on modeling and control of an implantable rotary blood pump.

Dean M Karantonis received the B.E. (Hons) degree in computer engineering and the M.BiomedE. degree in biomedical engineering from the University of New South Wales (UNSW), Sydney, Australia, in 2005. At present he is undertaking a PhD degree with the Graduate School of Biomedical Engineering at UNSW in collaboration with industry partner Ventracor, with the research focused on simulation and control of an implantable rotary blood pump.

John A Reizes is currently Adjunct Professor with the School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW), Sydney, Australia, and Faculty of Engineering, University of Technology Sydney (UTS), Sydney, Australia. He is internationally recognized for his work in numerical heat transfer and fluid mechanics with over 170 publications. He took a leadership role in the invention and development of an implantable rotary blood pump, which is at present in clinical trials. He was a Chairman of the College of Mechanical Engineers, a past Editor of the Mechanical Transaction of the Institution of Engineers Australia and is at present the Chairman of the Australasian Fluids and Thermal Engineering Society. He has served on the Engineering 2 Panel of the Australian Research Council (ARC) and on the ARC Collaborative Grants Committee. In 2006, Engineers Australia’s College of Mechanical Engineers awarded him the AGM Michell Medal, its highest honour for his contribution to the profession, sustained leadership in the development of mechanical engineering and for his contribution to the art and science of Mechanical Engineering.

Shaun L. Cloherty received the BE (Hons) degree in Aerospace Avionics from the Queensland University of Technology, Brisbane, Australia in 1997 and the Ph.D. degree in Biomedical Engineering from the University of New South Wales, Sydney, Australia in 2005. From 2005-2007 he was employed as a Research Associate in the Graduate School of Biomedical Engineering, Sydney, Australia, where his research activities included cardiac electrophysiology and modeling, flow estimation and modeling for control of an implantable rotary blood pump, and modeling of electrical stimulation strategies for a retinal vision prosthesis. He is currently a Postdoctoral Fellow in the Research School of Biological Sciences at The Australian National University, Canberra, Australia, where his research interests include aspects of development and organization of the mammalian visual cortex and functional assessment of electrical stimulation strategies for a retinal vision prosthesis. Dr Cloherty is a Founding Officer of the New South Wales Chapter of the IEEE Engineering in Medicine and Biology Society, in Sydney, Australia.

Nigel H. Lovell (M’90-SM’98) received the B.E. (Hons) and Ph.D. degrees from the University of New South Wales (UNSW), Sydney, Australia. He is currently Professor of Biomedical Engineering with the Graduate School of Biomedical Engineering, UNSW and holds an Adjunct Professorship in the School of Electrical Engineering and Telecommunications, UNSW. He has authored 250+ refereed journals, conference proceedings, book chapters and patents. His research work has covered areas of expertise ranging from cardiac modeling, home telecare technologies, biological signal processing, and visual prosthesis design. Dr. Lovell was the IEEE Engineering in Medicine and Biology Society (EMBS) Vice President (VP) for Conferences (2004/2005) and VP for Member and Student Activities (2002/2003). In 2007 he was program co-chair for the Annual IEEE EMBS Conference that was held in Lyon, France."

David Mason was born Fremantle, Western Australia on 7th December 1962. He graduated in Electrical & Electronic Engineering, University of Melbourne, Australia in 1985. His postgraduate studies in expert systems for closed-loop drug infusion systems in Intensive Care, Royal Melbourne Hospital earned him PhD in 1990. He worked in rhythm discriminators for implantable defibrillators with Telectronics Ltd in Sydney before gaining overseas experience with University of London, England where he developed endocardial electrodes for treatment of atrial flutter. Then at University of Sheffield he demonstrated the first clinical application of self-learning fuzzy control; closed-loop control of neuromuscular blockade during anaesthesia. In 2001 David returned to Melbourne to develop an expert advisory system for circulatory management in intensive care. In 2004 David commenced research into a feedback controller for a left ventricular assist device with Ventracor Limited, initially focussing on sensorless detection of ventricular collapse. He now continues this work as Senior Research Fellow in Dept Surgery, Monash University.